X\(F

Apollo Core
SAGA Technical Reference Manual

revision 1.0

chapter one
Sprite Hardware

What are Sprites?

Sprites are graphics objects that are created and moved independently from the rest of the display
hardware and from each other.

Sprite Evolution

The original OCS/ECS chipset featured 8 special-purpose sprite DMA channels. In their basic form a
sprite can be 16 pixels wide and any number of lines high. These basic sprites could select from a
palette of 3 colours per pixel or have a pixel be transparent. Sprites may be “combined” to form larger
objects on screen or increase the colours available for use with a sprite. To increase the width of a
sprite would be a simple matter of using two sprites horizontally. A special feature was made available
to “attach” sprites in specific combinations to increase the available colour palette to 15 colours +
transparent. Attaching sprites will be discussed later.

Sprite DMA channels can be re-used during the active display, making it possible to create more than
8 sprites on-screen at any one time.

Sprites may become unavailable especially when using wider displays due to the limitations in DMA
slots.

AGA Enhancements

= Sprites can select between LORES, HIRES and SHIRES resolutions independent of bit-plane
resolution.

= Sprites can be 16, 32- or 64-pixels wide.

= Attached sprites became available in all resolutions.

= Hardware scan-doubling for sprites became available allowing them to be displayed on 31khz
monitors. Scan doubling can be used on 15khz displays causing sprites to be repeated per row.

= Sub-pixel sprite positioning in low resolution modes.

= Palette bank switching allowing the sprites to use colours independent from the bit-planes.

SAGA (AGA+) Enhancements

= 16 Sprite DMA channels, allowing 16 on-screen sprites and DMA re-use.

= No sprite channel loss due to DMA bandwidth loss found in AGA.

= Sprite data can reside in Fast RAM.

= Sprites can be horizontally repeated without resorting to copper tricks.

= Sprites support an indirect data mode allowing for fast sprite-data switching.

= Sprites use their own palette bank of 256 colours.

= Every sprite can use its own 16 colour set from this bank.

= No need to attach sprites to obtain 16 colours.

= Palette entries use 24bit Red, Green and Blue components for enhanced colour fidelity.

= A new palette register, and copper command allow moving the full 32bit palette entry in a
single instruction.

= AGA+ sprite features are controlled by a new bit in the FMODE register to ensure backwards
compatibility with OCS/ECS/AGA.

Screen Positioning

A sprite’s position is defined as a set of X and Y coordinates which represent it’s upper left corner. The
X/Y value is always defined based on a low-resolution non-interlaced display regardless of the
resolution of the rest of the display hardware. Position (0,0) is not normally in the viewable region of
the screen due to display overscan, as described in the Playfield Hardware chapter. The amount of
displayable area is also affected by the size of the playfield display window. This is controlled via the
registers DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP etc.

Clipping is automatically applied to the bounds of the display and playfield display window.

The horizontal and vertical position (X/Y values) of the Sprite must take into account the display
window offset. For example, to display a Sprite at 94 pixels from the left edge and 25 pixels from the
top edge with a display window offset of 64 and 44 would require the calculations:

Desired X Position + Horizontal-Offset of Display Window = 94 + 64 = 158
Desired Y Position + Vertical-Offset of Display Window = 25 + 44 = 69

Visible screen area

(0,0)

]
-
=
w

Figure 1-1: Defining Sprite On-Screen Position

= Any horizontal position between 0 and 447 may be used.
= Any vertical position between 0 and 262 may be used.

The values of (64 horizontal and 44 vertical) are normal for an NTSC display.

Sprite Sizes

As mentioned previously sprites can be any height from a single row to taller than the screen. Under
OCS/ECS sprites are limited to 16 pixels wide. AGA and AGA+ offer a choice of 16, 32- or 64-pixel wide
sprites. Sprite size is based on a “pixel” that is 1/320" of the display’s width and 1/256 of the display’s
height (or 1/200™ for NTSC). This is independent of the resolution or interlace setting of the playfield
hardware.

Sprite Image Data (Non-Attached)

Sprite image data is defined in a planar fashion, similar to how the playfield hardware operates.
16-bit Data Words are combined to form the index into the sprites colour palette. For OCS/ECS in
non-attached mode the system colour registers 16-31 are used. The 8 sprites are organized into
pairs and each pair share the same 4 colour entries.

Sprite Numbers Colour Registers
Oand 1 17-19
2and3 fen - 21-23
4and5 25.27
6and 7 29-31

Table 1 — Colour Registers for Classic Sprites

High-order word of sprite data

Lol oo [a[2 o[22 2 [oJo o o]
(o oJo oot [x[x o1 []1 o] 0]

------- Low-order word of sprite data

Binary code that

represents a
{ palette entry
index or O for
transparent.

The binary value “00” is handled specially and indicates a transparent pixel. This will show the contents
from behind that pixel depending on both the sprite priority and sprite to playfield priority.

Colour Register Set

00 unused 16
01

10
11

Sprite O or 1 <

00 unused

20
Sprite 2 or 3 o l A\l
prite 2 or

3 10

11 Transparent
>
00 24 — b A

unused
01

10
11

Sprite 4 or 5 <

00 unused 28
01

10
11 31

Sprite 6 or 7 <

Figure 1-2: Colour Register Usage

Sprite Data Structure

Sprite data is constructed in memory as a series of 16-bit words. Some of the words contain control
information for the sprite, while the remainder contain the image data. The basic structure is as
follows:

l Memory Location l 16-bit Word l Function J
N Sprite Control Word 1 Vertical and Horizontal Start Position
N+2 Sprite Control Word 2 Vertical Stop Position
N+4 Sprite Binary Image Data Low Word 1
Row 1 Colour Data
N+6 Sprite Binary Image Data High Word 1
N+8 Sprite Binary Image Data Low Word 2
Row 2 Colour Data
N+10 Sprite Binary Image Data High Word 2
[N+.. l End-Of-Data Words l Two words indicating the next usage of this sprite J
Note

Sprite Data should be aligned on a 16-bit, 32-bit or 64-bit boundaries as determined by the size of
sprite in use (16-pixel, 32-pixel, 64-pixel)

For original Amiga systems Sprite Data must reside in Chip Memory. This restriction is not present in
the Apollo Core which allows Sprite Data to reside anywhere including Fast RAM.

e 16 bits oo =
~
VSTART, HSTART
VSTOP, control bits
: Each group of words
Increasing N defines one vertical
Address [low word of data, line 1] usage of a sprite.
: [high word of data, line 1] Each instance
Pairs of words contains the starting
ini location and physical
Additional rows of sprite image data gg:il?nlre?ge appearance of the
colour data. sprite.
low word of data, line N I
high word of data, line N I J J
0000000000000000C > .
Last two words contain all zeroes
v ooo000O0OOOOCOOOOO if this is the last vertical use of

the sprite in this frame.

Sprite Control Word 1: SPRxPOS

This word contains the vertical (VSTART) and horizontal (HSTART) starting position for the sprite.

Bits 15-8 Contains the low 8 bits of VSTART
Bits 7-0 Contains the high 8 bits of HSTART

Sprite Control Word 2: SPRxCTL

Bits 15-8 The low eight bits of VSTOP
Bit 7 (Used in attachment)

Bits 6-3 Unused (make zero)

Bit 2 VSTART high bit

Bit1 VSTOP high bit

Bit 0 HSTART low bit

End-Of-Data Words

When the vertical position of the beam counter is equal to VSTOP value in the Sprite control words, t
he next two words fetched from the data are written to the Sprite Control Registers instead of being
sent via the colour registers for display. These two words are interpreted by the hardware in the same
manner as the original words that were first loaded at the start of the Sprite data.

If the VSTART value of these end words is less than the current beam counter the Sprite will NOT be
re-used during the display. For consistency the value 0 should be used for both words when ending
the usage of the Sprite.

Enabling AGA+ Operation

FMODE Register ($dfflfc) AGA: Write Fetch Mode (0=OCS Compatible)

Bit Function Description
15 SSCAN2 Global Enable Sprite Scan Doubling
14 BSCAN2 Enables the use of 2nd Playfield modulus on alternate line
basis to support bitplane scan-doubling.
Setting this bit 13.05 Unused
is required to
use the] 4 SAGA Enable Enable 32bit Copper, Enhanced Sprites, Etc.
ehanced Sprite
features. 3 SPAGEM Sprite Page Mode (double CAS)
2 SPR32 Sprite 32 hit wide mode
1 BPAGEM Bitplane Page Mode (double CAS)
0 BPL32 Bitplane 32 bit wide mode
BPAGEM BPL32 Bitplane Fetch Increment Memory Cycle Bus Width
0 0 By 2 bytes (as before) normal CAS 16
0 1 By 4 bytes normal CAS 32
1 0 By 4 bytes double CAS 16
1 1 By 8 bytes double CAS 32
SPAGEM | SPR32 Sprite Fetch Increment Memory Cycle Bus Width
0 0 By 2 bytes (as before) normal CAS 16
0 1 By 4 bytes normal CAS 32
1 0 By 4 bytes double CAS 16
1 1 By 8 bytes double CAS 32

Figure 1-3: FMODE Register Usage

To enable AGA+ Sprite operation SAGA Enable, SPAGEM and SPR32 must all be enabled. All sprites
in AGA+ mode are 64-bit aligned and 64-pixels wide.

Sprite Data for AGA 32- and 64-Pixel Wide Sprites

To enable 32- or 64-pixel wide sprites requires changing the bit settings in the FMODE register as
follows:

FMODE Register DFF1FC

SPAGEM SPR32
(bit 3) (bit 2)
0 1 32 pixel wide sprites
1 0 32 pixel wide sprites
1 1 64 pixel wide sprites

Figure 1-4: FMODE Register Settings

For 32-pixel wide sprites the data must be aligned on a 32-bit boundary and each entry in the data-
structure becomes a full 32-bit value with padding:

dec.w $2020, $3000 ; 16-bit equivalent would become:

de.w $2020, $0000, $3000, $0000 ; or
de.l $20200000, $30000000

For 64-pixel wide sprites the data must be aligned on a 64-bit boundary and each entry in the data-
structure becomes a full 64-bit value with padding:
dec.w $2020, $3000 ; 16-bit equivalent would become:

dec.w $2020, $0000, $0000, $0000, $3000, $0000, $0000, $0000 ; or
de.1l $20200000, $00000000, $30000000, $00000000

AGA+ Extended Sprite Data Structure

AGA+ mode uses ONLY 32-pixel wide sprites. This feature is by design to ensure that the same amount
of data per row (64-bits) can be used to provide the full 4-bit (16 colour) index as opposed to having
a 64-pixel wide 4 colour only sprite.

The data structure for AGA+ operation is thus, quite different from AGA.

Control Words are extended to 64-bit, a new flag in bit 1 has been added to mark the sprite for
horizontal repeat.

Sprite image data no longer makes use of attachment, instead all 4 bits are directly included in the
sprite’s data.

The sprite’s image data is indirectly referenced via a pointer in the sprite control data-structure. The
advantage of this approach is that it allows a single sprite control structure to be updated to pointed
at a different image (for example an animated sprite) each frame without having to re-write the image
data into the existing structure or create unnecessary extra control words on each sprite image frame.
Another advantage to this is that each sprite’s control structure is now a fixed size.

64 = These two 16-bit words must be 0 > 0
A A A

L4 Ald A Al

[original 16-bit Control Word | Padding | Padding | New Bits]

(00000000] 0000000000000000 | 0000000000000000 | 000000000000000

(1) readay [euozuoy
(0) epow vovs

I
g g z
b = s
el a a
= = w
= = &
2 g 3
: i
g z g
z z &

| original 16-bit Control Word | Padding 1 Sprite Data_Pointer (32 bits))

0000000000000O0O0 000000000000Q0OOCO I $c0000000]

(sug g mol) dOLSA
uq ublY LUWISA
g ubly dOLSA
NG MO| LUVLSH

Figure 1-5: AGA+ Control Word Structure

CNOP O, 8

Sprite0_Control:
dc.1 $50600000, $00000021
dc.l $60000000, PlayerImage

PlayerImage:
dec.l Sffffffff, $00000000, SEffffffff, 500000000

= The Sprite Image data would yield a binary value of 1010 for each of the 32 pixels in that row.

AGA Sprite Colour Bank Selection

AGA provides some flexibility in allowing sprites to map to different ranges of the full 256 colour
palette. This is accomplished through bits 3..0 in the BPLCON4 registers which allows the assignment
of a 16-color page for odd numbered sprites and bits 7..4 for even numbered sprites. Attached sprites
in AGA will both use the same palette page as defined by the odd numbered sprite.

AGA Horizontal Sprite Tiling

The SSCAN2 bit in the FMODE register can be used to cause sprites to appear twice per horizontal
row. This trick has been used in several classic Amiga games such as Fantastic Dizzy CD32 to create a
repeating tree background layer. Four 64-pixel wide sprites are used in attached mode and then a
repeat happens at horizontal position + 256 pixels.

Extended Colour Palette Operation

When operating in AGA+ mode a separate colour palette is made available allowing Sprites to use a
completely unique palette from bit-plane image data.

Colour Palette A - AGA

(256 entries)
OCS/ECS/IAGA Mode
Colour Palette B - Sprite
£ > (256 entries)
Sprite. | ————| Colour Index Colour Palette C - Chunky
T AGAT Mode (256 entries)

Colour Palette D - PiP CLUT
(256 entries)

SAGA Palette Bank C

Sprite 0 fe > Entries 0..15
Sprite 1 e, > Entries 16..31
Sprite 2 peins - Entries 32..47
— J
v v
Sprite 15 foo - Entries 240..255
S J

Figure 1-4: AGA+ Colour Palette Banks

Fast Colour Setting Registers

A new 32-bit longword colour register is provided per bank which supports a full 24-bit colour and
allows setting the palette entry in a single operation either from the CPU or from the Copper via a
new Copper Move Long instruction.

32-bit Colour Registers

DFF380 Bit Description
Planar Palette A
DFF382 31-24 Colour Number
Setting a 32-bit sprite colour 23-16 8-bit Red Value
move.| #$00FF0000,$DFF384 ;set color0 = RED DFF384 15-08 8-bit Green Value
move.| #301FFFFO0,$DFF384 ;set colorl = YELLOW .
Sprite Palette B 07-00 8-bit Blue Value
Copper: DFF386
dc.w $8384,$00FF,$0000 ;set color0 = RED
DFF388
Chunky Palette C
DFF38A
DFF38C
PiP Palette D
DFF38E

All registers can be written as a single longword

= Aslong as the FMODE SAGA enable bit has been set the new 32-bit Copper Move instruction
is identical to a regular 16-bit move with the highest order bit set.

Displaying a Sprite

Once Sprite Data has been constructed you need to tell the system to display it. This section describes
“automatic” or DMA based Sprite display. In this mode the Sprite DMA channel will automatically fetch
the data and continue to display it until it reaches the VSTOP value. Operation will then continue based
on how the End-Of-Data words have been configured.

The follow steps are used in displaying a Sprite:

Decide which of the eight (or 16 for AGA+) Sprite DMA channels to use.

Set the Sprite pointers to tell the system where to find the Sprite Data.

Turn on the Sprite DMA if not already on.

For each subsequent frame, during the vertical blanking interval, re-write the sprite pointers.

PwnNPE

Note

If Sprite DMA is disabled while a sprite is still being displayed (between VSTART and VSTOP) the
system will continue to display the last row fetched causing a bar to be displayed on screen. It is
advised that Sprite DMA should only be disabled during a vertical blank or when you are sure that
absolutely no Sprite data is being displayed.

Selecting a DMA Channel and Setting Pointers

When selecting a DMA channel to use with your Sprite Data you should take into consideration the
colour palette mapping and the fixed sprite priority.

The Sprite DMA channel uses two pointers to read in the Sprite Data and Control Words. During the
Vertical Blanking and before the first display of the Sprite you need to write the sprite’s memory
address to these pointers. The pointer registers are named SPRXPTH and SPRxPTL for each
corresponding DMA channel x.

The least significant bit of SPRXPTL is ignored as Sprite Data must be aligned on at least a 16-bit
boundary. As usual you can write a full 32-bit value into the register pair using a single move.

MOVE.L #$200000, SPROPTH+CUSTOM

These pointers are dynamic and are updated by the DMA channel as the Sprite Data is consumed. The
data fetched is loaded into the corresponding control and data registers automatically in a similar
fashion to that described in the Manual Mode section.

Resetting the Address Pointers

As was already mentioned the address pointers are dynamic and thus for each display frame require
resetting. This reset can be performed via Copper lists or as part of a Vertical Blanking routine.

e Using AGA+ 32-bit Copper Move instruction simplifies this procedure for Copperlists:

dc.w $8120 ; Sprite 0 pointer
dc.l SpriteO_Control

dc.w $8124 ; Sprite 1 pointer
dc.l Spritel_Control

dc.w $8128 ; Sprite 2 pointer
dc.l Sprite2_Control

dc.w $812C ; Sprite 3 pointer
dc.l Sprite3_Control

dc.w $8130 ; Sprite 4 pointer
dc.l Sprited_Control

dc.w $8134 ; Sprite 5 pointer
dc.l Sprite5_Control

dc.w $8138 ; Sprite 6 pointer
dc.l Sprite6_Control

dc.w $813C ; Sprite 7 pointer
dc.l Sprite7_Control

dc.w $8320 ; Sprite 8 pointer
dc.l Sprite8_Control

Creating Additional Sprites

To use additional sprites, the above structures must be created per channel and the respective pointer
registers loaded (SPR1PTH, SPR1PTL, SPR2PTH, SPR2PTL etc).

Enabling DMA for a sprite will automatically enable DMA for all sprites and place them in automatic
mode. Thus, you do not need to repeat this step per sprite.

Once DMA is enabled all sprite pointers must be initialized to valid sprite data structures or point to a
safe NULL sprite.

Moving a Sprite

Sprites generated in automatic mode can be made to move by simply updating their position values
in the data structure. For each display frame this data is re-read and the sprite drawn at the new
position. Moving sprites should only be performed when Sprite DMA is not actively reading the data
as this may cause unexpected visual glitches. As with resetting address pointers these updates are
usually best performed by a Vertical Blanking routine or with the Copper.

As Sprites move about the screen, they can collide with each other or with either of the two playfields.
You can use the System hardware to detect these collisions. This feature is described in the next
chapter.

Sprite Priorities

Sprites have a fixed priority relative to each other with Sprite 0 being displayed in front of the others.
This applies to both original AGA (8 sprite) and AGA+ (16 sprite) modes.

Sprite N

{ Sprite 2

{ Sprite 1 1

Sprite 0

Sprite priority with regards to playfields is described in the Playfield Hardware chapter.

Sprite Overlays and Wider Sprites

Due to the fixed sprite priority it is possible to simply draw a lowered numbered sprite on-top of
another one to create more complex objects. To draw a sprite that is larger than the current fixed
side is as simple as using two Sprite DMA channels to place the sprites horizontally adjacent to each
other.

Simple Overlap (Non-Attached) Side-By-Side Drawing

(128,65) (144,65)
Sprite 0 Sprite 1

Sprite 1 Sprite 2

~ J

Y
Two 16 pixel wide sprites placed side-by-side to form a 32 pixel wide sprite.

Priority
ensures
sprites are
drawn
overlapped

Reusing Sprite DMA Channels

Each of the Sprite DMA channels can produce more than one independently controllable image with
the only restriction that the re-use must occur vertically.

Each instance of this sprite may be

placed at any desired position
horizontally or vertically, however at
* 1 least one video line must separate
- l the bottom of one usage and the
top of the next.

e ———
———

Note

AGA+ operation removes this restriction by performing a “double-fetch” on the last row of the
sprite. This allows the re-use to occur on the immediately adjacent row.

In normal operation a pair of zero-words are placed at the end of the Sprite Data to prevent the DMA
channel from fetching any more data. By replacing these words with a completely new sprite structure
including the controls words and positional data the same channel can re-instantiate another sprite
at a lower position on the screen.

Attached Sprites

For OCS/ECS and AGA systems a pair of sprites can be “attached” to allow for a palette of 15+1 colours.
To attach a sprite, you must:

= Use two channels per sprite, creating two sprites of the same size and located at the same
position.
= Set the ATTACH bit in the second sprite control word (The odd numbered sprite).

Sprites can be attached in the following combinations:

= Sprite 1to sprite 0
= Sprite 3 to sprite 2
= Sprite 5 to sprite 4
= Sprite 7 to sprite 6

Data from both sprites are fetched and combined bitwise to produce a value between 0-15. These
values map to colour register indices 16-31 with 0000 = 16 = transparent. The highest numbered sprite
contributes the high-order bits as follows:

Sprite 1] Sprite 0

[high word l low word]

H

Lol 2]o]o]

[high word l low word

Note

Attached sprites are not required in AGA+ operation as 16 colours are always available freeing up
all 16 sprites for general purpose use.

Manual Mode

It is almost always best to use automatic DMA mode with Sprites. Sometimes, however, it is useful to
load these registers directly from the CPU. Sprites may be activated “manually” whenever they are
not being used by a DMA channel. The same sprite that is showing an image at the top of the screen

using DMA can be reloaded manually there-after.

You display sprites manually by writing to the sprite data registers SPRxDATB and SPRXDATA, in that
order. The order is important as writing to SPRXDATA “arms” the sprite to be output at the next
horizontal comparison. This same data will be displayed on every row unless more data is loaded on

subsequent horizontal rows, in which case complex images can be produced.

A sprite can be “disarmed” by writing to the SPRXCTL register. Writing to the SPRxPOS register allows
you to manually move the sprite horizontally at any time, even during normal sprite usage.

Sprite Registers

The original registers for Sprite control are still valid in AGA+ operation for the first eight Sprites.

Another bank of registers is specified for the second set of eight.

Address Name R/W Description

DFF120 SPROPTH w Sprite 0 pointer (high 5 bits — was 3)
DFF122 SPROPTL w Sprite 0 pointer (low 15 bits)
DFF124 SPR1PTH w Sprite 1 pointer (high 5 bits — was 3)
DFF126 SPR1PTL w Sprite 1 pointer (low 15 bits)
DFF128 SPR2PTH W Sprite 2 pointer (high 5 bits — was 3)
DFF12A SPR2PTL W Sprite 2 pointer (low 15 bits)
DFF12C SPR3PTH W Sprite 3 pointer (high 5 bits — was 3)
DFF12E SPR3PTL W Sprite 3 pointer (low 15 bits)
DFF130 SPR4PTH W Sprite 4 pointer (high 5 bits — was 3)
DFF132 SPR4APTL W Sprite 4 pointer (low 15 bits)
DFF134 SPR5PTH W Sprite 5 pointer (high 5 bits — was 3)
DFF136 SPR5PTL W Sprite 5 pointer (low 15 bits)
DFF138 SPR6PTH W Sprite 6 pointer (high 5 bits — was 3)
DFF13A SPR6PTL W Sprite 6 pointer (low 15 bits)
DFF13C SPR7PTH W Sprite 7 pointer (high 5 bits — was 3)
DFF13E SPR7PTL W Sprite 7 pointer (low 15 bits)
DDF140 SPROPOS W Sprite O Position

DDF142 SPROCTL W Sprite 0 Control

DDF144 SPRODATA W Sprite 0 Data A

DDF146 SPRODATB W Sprite 0 Data B

*The register rows highlighted in green are repeated for each Sprite channel and follow on

sequentially.

AGA+ Extended Registers

Address Name R/W Description

DFF320 SPR8PTH W Sprite 8 pointer (high 5 bits — was 3)
DFF322 SPR8PTL W Sprite 8 pointer (low 15 bits)

DFF324 SPROPTH W Sprite 9 pointer (high 5 bits — was 3)
DFF326 SPROPTL W Sprite 9 pointer (low 15 bits)

DFF328 SPRAPTH W Sprite 10 pointer (high 5 bits — was 3)
DFF32A SPRAPTL W Sprite 10 pointer (low 15 bits)
DFF32C SPRBPTH w Sprite 11 pointer (high 5 bits — was 3)
DFF32E SPRBPTL W Sprite 11 pointer (low 15 bits)
DFF330 SPRCPTH w Sprite 12 pointer (high 5 bits — was 3)
DFF332 SPRCPTL W Sprite 12 pointer (low 15 bits)
DFF334 SPRDPTH w Sprite 13 pointer (high 5 bits — was 3)
DFF336 SPRDPTL w Sprite 13 pointer (low 15 bits)
DFF338 SPREPTH w Sprite 14 pointer (high 5 bits — was 3)
DFF33A SPREPTL w Sprite 14 pointer (low 15 bits)
DFF33C SPRFPTH w Sprite 15 pointer (high 5 bits — was 3)
DFF33E SPRFPTL W Sprite 15 pointer (low 15 bits)
DFF340 SPR8POS W Sprite 8 Position

DFF342 SPR8CTL W Sprite 8 Control

DFF344 SPR8DATA W Sprite 8 Data A

DFF346 SPR8DATB W Sprite 8 Data B

*The register rows highlighted in green are repeated for each Sprite channel and follow on
sequentially.

All registers are grouped per sprite and are functionality identical, thus for brevity we shall describe
the registers for Sprite 0 only.

= Registers DFF120 and DFF122 contain the 20-bit memory address (2MB Chip Memory Limit
for classic machines) or the full 32-bit address for AGA+.

= SPRxDAT registers buffer sprite image data. They are usually loaded by the Sprite DMA
channel but may be loaded manually at any time. When a horizontal coincidence occurs, the
buffers are dumped into shift registers are serially outputted to the display, MSB first on the
left.

NOTE: Writing the A buffer enables (arms) the sprite. Writing the SPRXCTL register disables
the sprite. If enabled data in the A and B buffers will be output whenever the beam counter
equals the sprites horizontal position value SPRxPOS. DATB bits are the 2SB (worth 2) for the
colour registers. DATA bits are LSBs of the pixels.

SPRxPOS

Bit Name Function

Start vertical value. High bit (SV8)is in

S e SPRXCTL register.

Sprite horizontal start value. Low order 3 bits
(SHO-SH2) are in SPRxCTL register. If SSCAN2
07-00 |SH10-SH3 bit is enabled in FMODE register, SH10 is then
disabled and free for Alice to use as an individual
scan-double enable.

SPRxCTL
Bit Name Function
15-08 EV7 - EVO End vertical value. Low 8 bits.
07 ATT fﬁ;tf attach control bit (odd numbered sprites
06 SV9 Start vertical value bit 10.
05 EV9 End vertical value bit 10.
04 SH1=0 Start horizontal value, 70ns increment
03 SHO=0 Start horizontal value, 35ns increment
02 sv8 Start vertical value bit 9.
01 EVE End vertical value bit 9.
00 SH2 Start horizontal value, 140ns increment)

These two registers work together as position, size and feature controls for a sprite.
They are usually loaded automatically by Sprite DMA during horizontal blanking, but
can be manually programmed at any time. Writing to SPRxCTL will disable the sprite.

Additional Information

The following link contains a detailed analysis of a number of clever tricks implemented with sprites
in a number of classic Amiga games:

https://codetapper.com/amiga/sprite-tricks/

